

• Answer all the following question	• No. of questions: 6
• Illustrate your answers with sketches when necessary.	• Total Mark: 90 Marks
• The exam. Consists of two pages	• The first page

- 1) a- If \overline{A} , \overline{B} , \overline{C} are vectors, and *d* is a scalar. Show why each of the following products is True or False. (i) $\overline{A}.\overline{B}.\overline{C}$ (ii) $\overline{A}X\overline{B}X\overline{C}$ (iii) $\overline{A}.\overline{B}.d$ (iv) $\overline{A}X\overline{B}Xd$ (v) $(\overline{A}.\overline{B})d$
 - b- Define and explain the concept of $\nabla f, \nabla, \overline{F}, \nabla \times \overline{F}$, and then derive an expression for ∇f , showing its magnitude and direction at any point.
 - c- State and prove the first Maxwell's equation for electrostatic field.
 - d- A vector field is given by $\overline{F} = r \ \overline{a}_r$, show that if it is solenoidal or not. Verify the divergence theorem over the closed surface of a shpere of radious R. (15 Marks)
- 2) a- A point charge $Q_1 = 300 \ \mu c$ located at (1, -1, -3) m experiences a force: $\overline{F} = 8\overline{a}_x - 8\overline{a}_y + 4\overline{a}_z$ N, due to charge Q_2 at (3, -3, -2) m. Determine Q_2
 - b-A vector field is given by: $\overline{F} = r \cos \phi \ \overline{a}_r$, show that if it is rotational field or not, and then verify the Stokes' theorem over the surface enclosed by , $30^\circ \le \phi \le 60^\circ$, $2 \le r \le 5$, z = 0, and the circulation in the direction of positive z. Sketch the required surface.
 - c- A uniform line charge of 3 μ c/m lies along z-axis, and a concentric circular cylinder of radius a = 2m, has (-1.5 / 4 π) μ c/m². Determine the electrostatic flux density at all regions. (15 Marks)
- 3) a- Develop an expression for the energy stored in static electric field.
 - b-A uniform plane charge with 40 μ c/m² is located at z = -0.5 m and a uniform line charge of -6 μ c/m lies along the y-axis. What net flux crosses the surface of a cube 2 m on an edge, centered at the origin.
 - c- If a ring of radius a is charged uniformly and lies on the z = 0 plane with its center at the origin. Show the potential and the electrostatic field intensity along the z-axis and then find the force on a point charge Q along the z-axis.
 - d-Determine the energy stored in a cube of 2 m side and its center lies on the origin and V=8x + 6y volt.

(15 Marks)

Good Luck Dr. Hanaa M. Raafat

- 4) (a) Atomic hydrogen contains 5.5×10^{25} atoms/m³ at a certain temperature and pressure. When an electric field of 4 kV/m is applied, each dipole formed by the electron and positive nucleus has an effective length of 7.1×10^{-19} m. Find
 - 1. The net dipole moment (P).
 - 2. The dielectric constant (ϵ_r).
 - (b) For a point charge Q = 25 nC lies at (3,4,6)
 - 1. Find \overline{E} at (2,1,0).
 - 2. Find ρ_s at (2,1,0) when a grounded conducting plate is places at z = 0.
 - (c) Two perfect dielectrics have relative permittivities $\varepsilon_{r1} = 2$ and $\varepsilon_{r2} = 8$. The planar interface between them is the surface x y + 2z = 5. The origin lies in region 1. If $E_1 = 100\hat{a}_x + 200\hat{a}_y 50\hat{a}_z$ V/m, find E_2 .

(15 Marks)

- 6) (a) Discuss briefly Gauss' Law for the magnetic field, and then compare it with that of the electric field.
 - (b) A current filament carrying 15 A in the a_z direction lies along the entire *z* axis. Find **H** in rectangular coordinates at point P (2,-4, 4).
 - (c) Define the self-inductance, then derive an expression for the self-inductance of a long solenoid of *N* turns, radius *a*, and length *L*.

(18 Marks)

Good Luck Dr. Sherif S. Hekal